Lessons2019-09-17T12:01:44+02:00

Courses

Karatasos, I. Tsivintzelis

The first and the second law of thermodynamics and other basic concepts, the thermodynamic state functions, phase equilibria and phase stability, chemical equilibrium. Introduction to Statistical Thermodynamics: Quantum states and partition functions, the canonical ensemble, the microcanonical ensemble, the grand canonical ensemble, the NPT ensemble, partition function for an ideal gas, partition function for a real fluid, equations of state from statistical thermodynamics. Phase equilibria for separation processes: Vapor-Liquid and Liquid-Liquid equilibrium, three phase equilibrium, phase diagrams (Types I-VI according to Scott and van Konynenburg classification), Solid-Liquid equilibrium, metastable equilibrium, modeling of phase equilibria using statistical thermodynamic models. Polymer and biopolymer solutions. Thermodynamics of surfaces and nanosystems. Thermodynamics of electrolyte solutions. Thermodynamics of biological processes. Environmental Thermodynamics. Thermodynamics of Energy production systems

Α. Lemonidou, A. Salifoglou

The course aims at instilling into students concurrently integrated and targeted knowledge on kinetics of chemical and biochemical processes. The fundamental nature of this knowledge formulates the field of applications in enzymatic and non-enzymatic processes. Given that kinetics is a key pillar in comprehending a variety of catalytic processes on a research and industrial scale, delving into and consolidating the principles governing the specific field constitutes the foundation for the development of critical exploration and assessment skills of (bio)chemical processes and reactivity. The combination of theoretical knowledge, applications in chemical engineering and simulation of chemical kinetic reactions, through modeling, provide a global experience sought out by any graduate student in (bio)chemical engineering.

  • Reaction properties
  • Basic reactor design equations
  • Kinetics of catalytic reactions
  • Biocatalysis
  • Reaction mechanisms
  • Enzymatic vs. non-enzymatic catalysis
  • Simulation of chemical kinetic reactions

G. Karapetsas

  • General form of conservation equations. Conservation of mass, chemical species and energy in integral and differential form. Conduction and diffusion. Initial & boundary conditions in fixed and moving boundaries.
  • Heat and mass transfer in solids and stagnant fluids. Conduction and diffusion in steady state and transient conditions. Homo- and hetero-geneous reactions. Heat transfer from extended surfaces. Evaporation & Condensation. Scaling and approximation techniques.
  • Fluid mechanics. Stress and rate of deformation tensors. Newtonian fluid. Momentum transfer at low and high values of the Reynolds number in confined geometries and around bodies. Boundary layers near solid surfaces.
  • Convective heat and mass transfer. Convection in confined and unncofined laminar flows. The Prandtl, Schmidt, Peclet, Nusselt and Sherwood numbers. Temperature and concentration boundary laminar layers. Buoyancy-driven flows.

A .Aggeli

The module offers the basic biological background to scientists interested in applying biological principles for tackling technological issues. Biology occupies a central place in the confrontation of major world-wide challenges, such as provision of better health care, environmental pollution, sustainable energy, food supply and in general a better quality of life. In order to be in a position to effectively apply biological principles, scientists need to be able first to understand thoroughly and in depth these principles. Indicative topics:

  • Biological hierarchy: classes of biological structures; cellular structure and dynamics; tissues;  energy input; motion;  transport.
  • Biological environment: the aqueous environment; the gaseous environment; nutrients; catabolites; influence of temperature, pressure; homeostasis.
  • Biological responses: crowding effect; mechanical & chemical triggers; self-control; environmental adaptation; energy and nutrients’ savings; co-operation, competition; communication, co-ordination; the biological “clock’; the biological periodicity; death.

A.A. Mouza & S.V. Paras

The course focuses on the design, simulation and optimization of processes related to the production of a wide range of products, e.g. food, petrochemicals, etc. Students will combine knowledge from different fields and apply it to the optimall design, both from an economic and an environmental (energy savings, waste reduction etc.) point of view, to design either an individual process equipment or an entire process. The subjects covered are:

  • Process design using process simulation software (ASPENplus). Process simulator is a tool that permits the study of complex processes and the prediction of the effect of various design parame-ters on the process behavior.
  • Design, simulation and optimization of process equipment (e.g. reactors, bubble columns, heat ex-changers, micro-equipment) using Computational Fluid Dynamics (CFD).
  • Application of Design of Experiments (DOE) techniques to determine the necessary “computational experiments” that adequately describe the response of a system to the variation of the design variables. Utilization of Response Surface Methodology (RSM).
  • Case studies.
  • Design project

At the end of the course the student will be able to:

  • Design optimally a process or an equipment using advanced optimization-based techniques and related computer-aided tools.
  • Justify clearly the results of a technical or research project based on underlying assumption and present them both in a technical and non-technical audience.
  • Acquire the learning skills which will allow them to continue their studies in an independent way.

Mouza, A. Assimopoulou, V. Zaspalis, D. Christofilos, A. Salifoglou, M. Mitrakas, E. Tsimpilis

The scope of the course is to familiarize students with the choice of opportunities and the field of applications of modern measurement techniques.  Initially, the basic principles of measurements will be presented that are independent of the type of measurement yet relate to the functional characteristics of the instrumentation employed and the methodology of designing experiments (Design of Experiments, DOE). A series of seminars will ensue on advanced measurement techniques, accompanied by demonstration of relevant instrumentation equipment. Seminars include:

  • Techniques on analysis and characterization of solids, such as Raman spectroscopy, X-ray diffraction
  • Techniques of chemical analysis involving atomic absorption, mass spectrometry in combination by liquid chromatography or nuclear magnetic resonance spectroscopy
  • Measurement of fluid-mechanics parameters through non-invasive techniques, such as μ-PIV, μ-LIF, and optical measurements of rapidly evolving phenomena.

(1st semester supportive course for all specializations)

Ε. Moutafi

Objectives
Working command of pure and applied mathematics for the science of chemical engineer-ing or for problems of interdisciplinary character.

Course content
1. A brief review of prerequisite concepts on: Linear Algebra, Single variable and Multivariable Calculus, Introduction to Differential Equations.
2. Development of the theory of PDEs.
3. Development of mathematical models for systems encountered in Chemical Engineering or in other applied sciences, such as Physics and Biology. Using one Differential Equation or a set of Differential Equations with appropriate boundary and / or initial conditions, we attempt to approximate real process-es.

Α.Aggeli & S.V.Paras

The module consists of two parts and includes theory and laboratory practicals. The stu-dent evaluation is based on a final exam paper (part I) and the completion of a project (part II).

Part Ι. Introduction to Biomedical Engineering; current trends with emphasis on Nanomed-icine; examples of clinical applications, such as in tissue engineering, drug delivery, regen-erative medicine, and minimally invasive therapy. Indicative topics:

  • Introduction to Biomedical Engineering with emphasis on Nanomedicine.
  • Introduction to the function of the human body (anatomy, tissues, organs, internal processes).
  • Medical nanoengineering : regenerative medicine, tissue engineering, controlled de-livery, toxicity, biocompatibility, bioethics, perspectives.

Part II. The aim is the students to be able to deal with problems related to the flow of bio-logical fluids in the human body. The course deals with the application of computational and experimental techniques related to fluid mechanics to the fluid flow in the human car-diovascular and respiratory system. Among other things, the lectures include:

  • Fundamentals of fluid mechanics related to biomedical systems.
  • Study of flow in straight, curved and branched vessels (arteries, pulmonary bronchi, bypass). Velocity, pressure drop and wall shear stress distribution.
  • Study of blood thrombus formation and atherogenesis.
  • Application of advanced experimental techniques (μ-PIV, μ-LIF, image processing) and computational fluid dynamics (CFD) to the study of blood flow.

Α. Assimopoulou

Introduction. Basic terms and definitions . Drug Discovery and Development process .

Innovation in the Pharmaceutical Industry- New (innovative) drugs – Generic drugs –

Drug properties- Intro to Pharmacokinetics- Pharmacodynamics – Bioavailability-Bioequivalence – Analysis of pharmaceuticals -Quality control of Pharmaceuticals – Good manufacturing practices- Pharmaceutical Quality by Design (QbD)- Scale up in the pharmaceutical industry: from lab to industrial production -Case studies- Pharmaceutical process development-The drug manufacturing process.

Tablet-Capsules-Ointments-Creams -Emulsions-Suspensions – Drug Delivery Systems.

Stability – Shelf life of pharmaceuticals- Pollution from pharmaceutical industries – Waste management – Laboratory.

P. Vareltzis

Bioactive food components – Functional Foods: structure, physical and chemical properties, isolation from natural sources, incorporation into foods with an emphasis on the role of food engineering on the manufacturing of such products. Relation of functional foods to nutrition and health.

Foodomics: a new area of scientific interest, which studies food and nutrition through the use of -omics technologies in order to contribute to consumer’s health. Description of the tools used and practical applications.

Developments in processing of bioactive materials and foods. Encapsulation, spray drying, freeze drying, sonication, microwave, high pressure processing, 3D food printing. Transport phenomena during these processes and process optimization.

A.A. Mouza, C. Chatzidoukas

COURSE OBJECTIVE

The purpose of the course is to give an up-to-date overview of a variety of emerging techniques and methods used for the design and efficient operation of bioreactors, given their essential role as artificial harbours for growing and maintaining cell cultures. That task decomposes into several endeavours necessary to accomplish, and generally requires a wide set of engineering theory including among others basic engineering principles, systems biology and conceptual de-sign theory.

COURSE STRUCTURE

The course includes:
1. Lectures and exercises on the following scientific fields:

• Challenges for bioreactor design and operation
• Bioreactor designs and cell kinetics
• Gas-liquid mass transfer
• Experimental measurement techniques
• Sterility in industrial bioreactors
• Scale-up methodologies for bioreactors
• Bioreactor applications – A case-study
• Integration of Bioreactors with Downstream Processing Steps

2. Educational project

A. Salifoglou

  • Biosynthesis of primary and secondary metabolites
  • Enzyme production regulation
  • Fermentation Kinetics
  • Continuous cultures
  • Kinetics and mechanics of sterilization
  • Enzyme isolation
  • Kinetics and immobilization of enzymes
  • Enzyme reactors
  • Applications

The course seeks and stimulates natural selection of new knowledge, directly related to applications in Fermentation Engineering and Technology, Biochemical Engineering, Microbiology and Genetics. Transfer of this interdisciplinary knowledge to the development of bioreactors, compatible with current synthetic biology and innovative industrial production of new (bio)materials (e.g. proteins, enzymes), simultaneously offers a broad spectrum of applications and motivates graduate students to delve into the intricacies of contemporary biotechnology.

The final grade of the course is based on a final comprehensive examination.

E. Kikkinides, K. Karatasos, I. Tsivintzelis

Introduction to Computer Simulations-From molecular level to process simulation. Molecular simulations:  Introduction to Monte Carlo and molecular dynamics, computational techniques for determination of structure and physicochemical properties of materials. Prediction of thermodynamic properties of pure fluids and mixtures – Mean field theories: Cubic equations of state, activity coefficient models, EoS GE models, association theories and models, the Statistical Associating Fluid Theory (SAFT), the Cubic-Plus-Association equation of state, the lattice fluid hydrogen Bonding  EoS, models for electrolyte solutions, applications to systems with Pharmaceuticals, amino acids and polypeptides, partition coefficients of chemicals in environmental ecosystems, thermodynamic models in Process Simulators (ASPEN Hysys etc). Mesoscopic Modeling and simulation of equilibrium and transport processes: The Lattice Fluid as a model fluid and its connection to the Ising Model. Thermodynamics of the lattice fluid: Density. Functional Theory (DFT) using: Monte Carlo Methods, Mean Field Theory (MFT), equilibrium inside a nanostructure: wetting and non-wetting fluids, comparison with Monte Carlo methods using Lenard Jones fluids, transport Processes using Lattice Fluids, Dynamic Density Functional Theory (DDFT), DDFT with hydrodynamic interactions, connection with other transport theories, transport processes in nanostructures under complete and partial wetting, comparison with Molecular Dynamics using Lenard Jones fluids.

M. Mitrakas

Postgraduate students after successful completion of the course will develop the necessary learning skills to allow them to deeply understand and designed water treatment processes through the evaluation of available scientific data and the international literature, as well as to present their work in clear and scientific manner.

Introduction: Hydrological cycle, water sources, physical and chemical quality of water, strategy on design water treatment plants.

Suspended solids separation processes: Stability of particulates, coagulation – flocculation, sedimentation, filtration through porous media and surface filtration, process design – cost analysis. Continuous flow lab-experiments on suspended solids separation by coagulation – flocculation and sand filtration and process evaluation through the change of particle size distribution.

Disinfection processes: Disinfection mechanisms, process alternatives, chemistry of disinfectants, UV disinfection, parameters influencing disinfectants’ efficiency, design of disinfection facilities, ozonation – industrial implementation.

Dissolved substances removal: Selective processes: Chemical precipitation, adsorption, ion-exchange. Non-selective processes: Reverse osmosis, nanofiltration, process description, membrane’s fouling and cleaning

Selected processes for water treatment

Visiting water treatment plants

Α. Lemonidou, V. ZaspalisApplication of the basic principles and knowledge of Chemical Engineering in chemical pro-cesses of energy and environmental interest with emphasis on reactor systems
Process overview will include:
– Basic Process Features – Flow Diagrams
– Thermodynamics and kinetics of chemical reactions
– Reactor design principles (fixed, moving, fluid bed, membrane reactors, gas-solid)
Processes under study:
– Cleaning flue gases from mobile and stationary sources
– CO2 capture from flue gases of energy-intensive industries (cement, power plants)
– Production of alternative fuels (H2, CH3OH, synthetic fuels)
– Production of environmental fossil fuels
Intensification of energy processes – Application of intensification to hydrogen production – Combined reaction and separation of products using solid sorbents.

D. Sarigianis

Μarc J. Assael

The aim of this course is to enhance awareness and comprehension of the procedures adopted in the calculation of the toxicity levels concentrations following a toxic gas dispersion in the atmosphere, as well as their effects. At the same time selected major toxic dispersion accidents are analyzed and studied. A software, specifically developed in the Laboratory of Thermophysical Properties & Environmental Processes, for the investigation of the parameters influencing a dispersion, is employed. The course in concluded with virtual trials.

More specifically, the course is composed of

  • Introduction to Major Industrial Accidents through video analysis (Dispersion of chemical, nuclear, and biological substances, as well as terrorist actions).
  • Outflow from pipes, vessels, and stacks (Outflow equations).
  • Dispersion equations. Meteorological conditions, parameters of influence.
  • Toxic gas dispersion cases. Calculation of toxic-gas concentration.
  • Calculation of effects from toxic-gas dispersion.
  • Terrorist actions (Toxic gases in terrorist actions)
  • Case studies.
  • Virtual trials.